Extracellular Biocatalytic Activity of Thermophilic Lipase And Protease of Solibacillus Silvestris NND-3


  • Das Nagendra Nath,
  • Bisht Satpal Singh


Thermostable lipase and protease production, 16S rRNA, thermophilic bacterial strain, extracellular biocatalytic activity


In this present study, thermophilic Solibacillus silvestris NND-3 was isolated from hot-water spring of Atri region of Odisha state, present in India and evaluated for extracellular biocatalytic activity of thermophilic lipase and protease by using culture dependent approaches. Protease activity was observed optimum at the stationary phase, 36-hours (remain stable for 24-36 hours at 560C) of NND-3 isolate. Effect of organic solvents and various inhibitors and commercial detergents on residual protease activities (mean %) of NND-3 isolate were observed maximum as compared to residual lipase activity (mean %). 16S rRNA sequence of the thermophilic bacterial isolate was deposited in NCBI database and obtained GenBank accession number as JX680812. This thermophilic bacterial strain was emerged as one among few strains having high protease productivity in Firmicutes class with novel bioprospecting potential which can be used in detergent based industries.


Herbert R. (1992). A perspective on the biotechnological potential of extremophiles. Trends Biotechnol., 7: pp 349–353.

Brock T. D. (1985). Life at high temperatures. Science, vol. 230, no. 4722: pp. 132–138.

Zeikus J.G., Vieille C., Savchenko A.T. (1998). Biotechnology and structure-function relationship. Extremophiles, 1: pp 2-13.

Cowan D.A. (1992). Enzymes from thermophilic Archaebacteria: current and future application in biotechnology. In The archaebacteria:

Biochemistry and Biotechnology (Biochem. Soc. Symp., 58). Eds. J. Danson, D.W. Hough and G.G. Lunt. Portland Press, London, pp 149–

Niehaus F., Bertoldo C., Kahler M., Antranikian G. (1999). Extremophiles as a source of novel enzymes for industrial application. Appl.

Microbiol. Biotechnol., 51: pp 711–29.

Handelsman J. (2004). Metagenomics: application of genomics to uncultured microorganism. Microbiology and Molecular Biology

Reviews, vol. 68, no. 4: pp. 669–685.

Daniel R. (2004). The soil metagenome - a rich resource for the discovery of novel natural products. Current Opinion in Biotechnology,

vol. 15, no. 3: pp. 199–204.

Streit W. R., Daniel R., Jaeger K. E. (2004). Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms.

Current Opinion in Biotechnology, vol. 15, no. 4: pp. 285–290.

Gralnick J.A., Newman D.K. (2007). Extracellular respiration. Mol. Microbiol., 65(1): pp 1-11.

Dassonvillea F., Godon J.J., Renault P. (2004). Microbial dynamics in an anaerobic soil slurry amended with glucose, and their dependence

on geochemical processes. Soil Biol. Biochem., 36: pp 1417-1430.

Lin B., Braster M., Breukelen B.Mv., Verseveld H.Wv., Westerhoff H.V., Roeling W.F.M. (2005). Geobacteraceae community composition is

related to hydrochemistry and biodegradation in an iron-reducing aquifer polluted by a neighbouring landfill. Appl. Environ. Microbiol.,

(10): pp 5983-5991.

Scheid D., Stubner S., Conrad R. (2004). Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root

decomposition. FEMS Microbiol. Ecol., 50(2): pp 101-110.

Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. (1991). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative

analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol., 13: pp 202–206.

Farrow J. A. E., Ash C., Wallbanks S., Collins M. D. (1992). Phylogenetic analysis of the genera Planococcus, Marinococcus and Sporosarcina

and their relationships to members of the genus Bacillus. FEMS Microbiol. Lett., 72: pp167-172.

Nazina T. N., Tourova T. P., Poltaraus A. B., Novikova E. V., Grigoryan A. A., Ivanova A. E., Lysenko A. M., Petrunyaka V. V., Osipov G. A.,

Belyaev S. S. and Ivanov M. V. (2001). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov.,

sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus

thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to

Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G.kaustophilus, G.

thermoglucosidasius and G. thermodenitrificans, Int. J. Syst. Evol. Microbiol., 51: pp 433-446.

Rheims H., Fruhling A., Schumann P., Rohde M., Stackebrandt E. (1999). Bacillus silvestris sp. nov., a new member of the genus Bacillus

that contains lysine in its cell wall. Int. J. Syst. Bacteriol., 49: pp 795–802.

Wisotzkey J. D., Jurtshuk P., Fox G. E., Deinhard G., Poralla K. (1992). Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus

acidocaldarius, Bacillus acidoterrestris and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov.

Int. J. Syst. Bacteriol., 42: pp 263-269.

Haakensen M., Dobson C.M., Deneer H., Ziola B. (2008). Real-time PCR detection of bacteria belonging to the Firmicutes Phylum. Int. J.

Food Microbiol., 31;125(3): pp 236-41.

Adams M.W.W., Kelly R. M. (1995). Enzymes isolated from microorganisms that grow in extreme environments. Chemical and Engineering

News, vol. 73, No. 51: pp 32–42.

Liao H., McKenzie T., Hageman R. (1986). Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. PNAS, 83:

pp 576-580.

Lasa L., de Grado M., de Pedro M. A., Berenguer J. (1992c). Development of Thermus-Escherichia shuttle vectors and their use for the

expression in Thermus thermophilus of the celA gene from Clostridium thermocellum. J. Bacteriol., 20: pp 6424-6431.

Winkler F.K., d’Arey A., Hunziker W. (1990). Structure of human pancreatic lipase. Nature, 343: pp 771-774.

Manachini P.L., Fortina M.G., Parini C. (1998). Thermostable alkaline protease from Bacillus thermoruber- A new species of Bacillus. J. Appl.

Microbiol. Biotechnol., 28: pp 409-413.

Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T. (1994). Bergy’s Manual of Determinative Bacteriology. Nineteenth edition, Williams and

Wilkins Company, Baltimore, MD, USA., pp. 255-273.

Turner S., Pryer K.M., Miao V.P.W., Palmer J.D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by

small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 46: pp 327–338.

Tamura K., Dudley J., Nei M., Kumar S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular

Biology and Evolution., 24: pp1596-1599.

Stackebrand E., Goebel B.M. (1994). A place for DNA-DNA reassociation and 16S ribosomal RNA sequence analysis in the present species

definition in bacteriology. Int. J. Syst. Bacteriol., 44: pp 846-849.

Grodowska Katarzyna, Parczewski Andrzej (2010). Organic solvents in the pharmaceutical industry. Acta Poloniae Pharmaceutica-Drug

Research, vol. 67, No.1: pp. 3-12.

Oberoi R., Beg Q.K., Puri S., Saxena R.K., Gupta R. (2001). Characterization and wash performance analysis of an SDS-resistant alkaline

protease from a Bacillus sp. World J. Microbiol. Biotechnol., 17: pp 493-497.

Saeki Katsuhisa S., Katsuya O., Tohru K., Susumu I. (2007). Detergent Alkaline Proteases: Enzymatic Properties, Genes, and Crystal

Structures. J. Biosci. Bioeng., 103: pp 501-508.

Gupta R., Beg Q.K., Lorenz P. (2002). Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol.

Biotechnol., 59: pp 15-32.

Schäfer T., Kirk O., Borchert T.V., Fuglsang C.C., Pedersen S., Salmon S., Olsen H.S., Deinhammer R., Lund H. (2005). Enzymes for Technical

Applications. In: Biopolymers, Eds. Fahnestock, S.R. and A. Steinbüchel, Wiley VCH Editor, Chapter 13, pp: 377-437.

Zeikus J., Vielle C., Savachenko A. (1998). Thermozymes: biotechnology and structure-function relationships. Extremophiles, 2: pp 179-183.

Leuschner C., Antranikian G. (1995). Heat stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J.

Microbiol. Biotechnol., 11: pp 95-114.

Haki D., Antranikian G., Rakshit S.K. (2003). Developments in industrially important thermostable enzymes: a review. J. Bioresource

Technology, 89: pp 17-34.

Rao M., Tankasale A., Ghatge M., Deshpande V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol.

Biol. Rev., 62: pp 597-634.




How to Cite

Das Nagendra Nath, & Bisht Satpal Singh. (2016). Extracellular Biocatalytic Activity of Thermophilic Lipase And Protease of Solibacillus Silvestris NND-3. Research Inspiration: An International Multidisciplinary E-Journal, 1(IV), 01–14. Retrieved from http://researchinspiration.com/index.php/ri/article/view/38